Next generation tools in m RNA purification: The role of continuous Raman spettroscopy testing with pretreatment of the sample

Luisetto m¹, Nili B. Ahmadabadi², Khaled EDBEY³, Oleg Yurevich Latyshev⁴

¹IMA Marijnskaya academy industrial and applied chemistry branch, professorship general toxicology Italy 29121
²medicinal chemist, Nano Drug Delivery, (a Product Development Firm), United States
³professor of physical chemistry, Libyan Authority for Scientific Research
⁴IMA president RU

Corresponding Author: Luisetto m, IMA Marijnskaya academy industrial and applied chemistry branch, professorship general toxicology Italy 29121

Received: February 24, 2024; Published: March 04, 2024

Abstract

In biopharmaceutical productions field the purification process is a crucial step in order to obtain Drugs with impurity profile according the regulatory agency requirement.

Aim of this work is to verify some relevant and recent literature and after analysis to submit to the researcher new Solutions in order to improve the global safety and the toxicological profile: is is submitted a project related the in continuous testing of the purified materials using Raman spettroscopy – with pretreatment of the sample.

Keywords: m RNA, Purifications, chromatography, separations, columns, resins, monoliths, activated carbon, Raman spettroscopy, pre treatment of sample, continuous testing systems.

Introduction

In various biopharmaceutical productive process the final purification is a relevant step and are used in example various chromatographic process using different systems (resins, column, monoliths). Various materials are used for the stationary phase. Some vials of m RNA vaccine was analyzed by independent researcher in order to verify the profile of impurity (1) Many classic and biological drugs use activated carbon for purification of water needed (pirogen) and in commerce there are producers that use composite materials in their monoliths (carbon based). (2)(3) In recent time great public debate was involved in finding of graphene like particle in some C19 vials of vaccine as well as in blood of many vaccinated people. (4)

According regulatory agency it is accepted RAMAN spettroscopy also direct to verify impurity in the pharmaceutical product. But this method (the direct one assay), when applied to nanolipids, according literature is not the best way to test the payload of the nanoparticle. (6) To increase the possibility to find all impurity it is crucial to pre treat the sample (nanolipids) with solvent before preform the RAMAN test.

Material and methods

With an observational point of view some relevant literature is reported and an hypothesis of work is then submitted to increase the global safety related some impurity for the nanolipids based drugs production.

Results

From literature: as reported in reference form 1 to 7. “Because in various API manufacturing process are used AC products it is necessary to test the final impurity also for graphene: this is due by the different size of the particle of amorphous AC vs cristalline exfoliated graphene. (also for genotoxicity) and the toxicity that can be produced also below the threshold for impurity. The AC production can imply really high temperature with chemico – physical change. The pharmacopeia monography for AC not cite the word graphene.” (8).

Experimental project hypotheses

In order to increase the power of detecting impurity in nanolipids drugs
Next generation tools in mRNA purification: The role of continuous Raman spectroscopy testing with pretreatment of the sample

it is necessary at the end of the production process to test in continuous way the final product using RAMAN spectroscopy (with pretreatment of the sample). In this way only after use of solvent it is possible to avoid the interference played by the nanolipids.

Discussion

In literature is reported: the crucial role played by the purifications steps various chromatographic procedure are used, using resins and monoliths some producers use activate carbon composite materials for production of water for injectable (PIROGEN) are used also charcoal filter systems membrane the test for PAT (PROCESS ANALYTICAL TECHNOLOGY) analysis in pharmaceutical production use also RAMAN SPEKTROSCOPY. It is allowed by regulatory agency the direct testing with RS (without pretreatment with solvent of the sample).

This method is not the best to test the payloads for nanolipids drugs. According Vanden-Hehir S, et al. “A major advantage of Raman is that it allows direct imaging of the nanocarriers, and not the payload encapsulated within them.” Independent researcher find graphene like particle in some vials of some C19 vaccine (1)

Other researcher find graphene particle in blood of vaccinated. (4) From membrane of activated carbon can be released impurity. One method to produce water for injection (pirogen remove) is using activated carbon.

(The same in order to remove pirogen form injectable). Activated charcoal is produced also using really high temperature and it can exfoliate graphite and graphene (8) even if under the threshold requirement of the regulatory agency. In monography of activated carbon of various pharmacopeia the term graphene is not reported.

Conclusion

For all reported in discussion i is opinion of the authors that to increase the level of safety in mRNA PRODUCTION and purifications it is necessary to test the final product in biopharmaceutical production in continuous way using a RAMAN SPEKTROSCOPY with pretreatment of the sample with solvent. This to avoid interference played by the nanolipids.

Also for the classic chemical drugs and their productive process it is of interest to verify the absence of impurity form activated carbon membrane used related the level today admitted (thresholds) by pharmacopeia.

What are the toxicological effect played by some impurity if present in drugs final product also under the regulatory thresholds?

The mRNA purifications steps can be improved using new technology, classic chemical analytical tests with pretreatment of the samples and performed in continuous way.

Conflict of interest

No.

References

4. Riccardo Benzi Cipelli, Franco Giovannini et al; (2022) “Dark -Field Microscopic Analysis on the Blood of 1,006 Symptomatic Persons After Anti-COVID mRNA Injections from Pfizer/BioNTech or Moderna” International Journal of Vaccine Theory, Practice, and Research pp08-12
7. Activated charcoal BP monography
8. LUISETTO M ET AL (2023) “AMORPHUS SUBSTANTIE (ACTIVATED CHARCOAL) AND OTHER IMPURITIES IN API MANUFACTURING PROCESS. PHARMACEUTICAL, TOXICOLOGICAL AND REGULATORY IMPLICATION” WJPR